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Below we investigate a method of solution of the plane problem in the 
dynamics of an ideal, incompressible fluid without gravity forces, of 
steady, separated flow over bodies of polygonal form for the case where 
the flow field is doubly or triply connected. It is shown that the solu- 
tion of the given problem reduces to quadratures. The solution of the 
analogous problem for a singly connected region may be obtained by the 
method of Joukowski 11-31, and for a doubly connected region by the 
method of Sedov [23. By way of illustration of the method, the solution 
for a submerged wing is obtained. 

f. Fortwlatiod of the problem Let the steady. plane potential flow 
of an ideal incompressible fluid without gravity forces occupy a triply 
connected (or doubly connected) region in the physical plane of the com- 
plex variable I = I + iy. Part of the boundary of the flow is known a 
priori, and is composed of straight-line segments; we denote it by M. 

The remaining part of the boundary of the flow is free and is unknown 
to start with; we denote it by L. 

In the plane hydrodynamics of steady, potential flows of an incom- 
pressible ideal fluid, the following basic relations hold t1.31: 

Here, p is the pressure, ttx and vy are the velocity components in 
the directions of the coordinate axes, p is the density, pm and vm are 
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the pressure and velocity at infinity. 

The analytic function w(z) may be represented in the form 

w (4 = 5 kin (2 - zk) + w. (4 
k=l 

(1.2) 

Here, rk is the circulation around the boundary contour Ck, k = 1, 

2, 3; zk is a point inside the contour Ck; the function wu( 2) is single- 

valued, analytic; the quantities rk are given or are determined from 

certain additional conditions. 

With the help of the basic relations (1.1). the boundary conditions 

of the problem may be formulated in the following form: 

Imw(z) =qk on C, (k = 1, 2,3) (i-3) 

arg w’ (z) = - gj on M, lw’ (2) ia = v,” (1 + Q;) on L (1.4) 

Here, ‘j is the angle made by the jth straight-line segment of the 

boundary M with the flow direction along the x-axis; Qi are the cavita- 

tion numbers on the various portions of the free boundary. One of the 

Constant and a priori unknown quantities yk may be put equal to zero. 

Similar mathematical problems arise in the theory of cavitation and 

jets, in the theory of a submerged wing, etc. [l-31. In fact, when the 

segment L is absent, we obtain the problem of potential flow over three 

polygons; when the contour Ck is part of the boundary L, it may be 

interpreted as a hollow vortex, etc. 

2. Solution of boundary value problems. 1. We go into the parametric 

plane of the complex variable 5 by means of the transformation z = o(j). 

The function z = o(g) gives a single-sheeted conformal mapping of the 

exterior of three (or two) cuts on the real axis of the c-plane onto the 

triply (or doubly) connected region of flow in the z-plane, with the 

point at infinity of the z-plane corresponding to a certain point 5 = &, 

of the c-plane. It is well known that such a mapping is always possible _ _ 
for arbitrary doubly 

note that, generally 

than three cannot be 

line r4.51. 

Define 

connected and triply connected regions 14,51. we 

speaking, a region of connectivity of order higher 

mapped on the exterior of cuts along a straight 

w 10 (f)l = y (51, 
ln  w’ 10 031 

VP 
= 0 (5) (2.1) 

The boundary value problems for determining the analytic functions 

a(j) and ‘t’(3) on the basis of equations (1.3) and (1.4) may be written 

in the form 
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Im~Ci) =c/lk for 5 E (4*, BJJ UC = 1, 2, 3) (2.2) 

Re Q (6) = ‘/a In (1 + QJ for f EL, Im @ (5) = - Bj for s E M (2.3) 

Here, L and 1 again denote the maps of the corresponding portions of 
the boundary in the z-plane. 

The functions Q(c) and y(c) possess the following properties. 

1) If the point at infinity of the z-plane is an interior point and 

the expansion 

r 
W (2) = vweMiez + m In 2 + 0 (z-1) 

is valid there, then at the corresponding point 5 = $, the function u’(c) 
will have a pole and a logarithmic singularity, while the function Q(c) 
will be bounded. If the point at infinity of the z-plane is a boundary 
point, then at the corresponding point of the c-plane there may be a 
logarithmic singularity or pole of the function ‘u(i). For example, the 
reentrant jet in the method of Efros and Gilbarg-Rock corresponds to a 
logarithmic singularity (and its neighborhood) in the <-plane. 

2) Vortices and sources In the z-plane correspond to logarithmic 

singularities in the function Y(g) and poles in the function (D(c). 

3) In making a traverse of the segment (ak, bh), corresponding to the 
contour Ck, the real part of the function Y(g) undergoes an increase fk. 
At points of the c-plane which correspond to critical points of the flow, 
the function @([) has a logarithmic singularity. 

4) At the ends of the segments (ak, bk) the functions (D(c) and Y(c) 
are, generally speaking. bounded. 

A more detailed investigation of the types of singular points of the 
functions G(5) and iu({) which may be encountered is found in the aono- 
graph of Gurevich C3f. 

It is convenient to differentiate condition (2.2) with respect to 5 
and to look for solutions of the resulting Dirichlet problem, in terms 
of single-valued functions which are now not bounded at the end points 

“k# bk. The solution of this problem is in [2,6,71. 

The mixed boundary value problem (2.3) is a particular case of the 
Memann-Hilbert boundary value problem with discontinuous coefficients 
for the exterior of cuts along a straight line, whose closed solution 
has been obtained by the author [61. Re note that in the case of a 
doubly connected region the original flow problem may be reduced to a 
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Dirichlet problem and a mixed boundary value problem for the circle, 

whose solution in closed form was obtained by Sedov [21. 

2. The mixed boundary value problem (2.3) may be reduced [81 to a 

Riemann boundary value problem for two functions with a matrix coeffi- 

cient G(t) 
(2.4) 

G(t) = 
0 a (4 - 1 (t EL+) - 1 (t EL-) 

P (4 0 I ’ a @) = + 1 (t E M+)’ 1 P (4 = 
{ + 1 0 E M-1 

Here, Lf , Mf denote the portions of the cuts lying along the upper 

or lower edges. The right-hand part of Riemann’s boundary value problem 

can be written in the form 

(2.5) 

f = fl 0) 

II 

(t E L-1 

fa (4 ’ 
fl 0) = 

2 In (1 + Qi) (t EL+) 2 In (1 + Qi) 
_ 2io 

j (t E iv+) fz (t) = 2iOj (t E M-) 

The solution of Riemann’s boundary value problem, (2.4) and (2.5). is 

to be sought in a class of functions which are bounded at the ends of 

the segments (ak, bk) and which have given singularities (poles or 

logarithmic points). As usual, by introducing certain new functions which 

are obtained by removing all singularities from inside the region. the 

problem reduces to a Riemann boundary value problem (with other coeffi- 

cients) for functions which have no singularities inside the region. 

The general solution of such a problem is written out in [d. We will 

not introduce it here. We may note only that, in equation (1.11) of [Sl. 

it may happen that the product [Bn(z)X, 2(z)l-’ has a non-integrable 

singularity at certain end-points z = gi of the segments (ak, bk), SO 

that equation (1.11) becomes meaningless. In that case, as is easy to 

see, it is necessary to take the 

function 

i 

instead of B,(z) in equation (1.11). 

The solution obtained will satisfy all 

conditions of the problem and the 

integrals will be convergent. Corre- 

spondingly, the existence conditions Fig. 1. 

for the nonhomogeneous problem will 

be written somewhat differently. Similar remarks apply also in relation 

to equations (1.9) and (1.10) of [91. 

In the solution of specific problems, it is more convenient to adopt 

the procedure for solution given in [8,9j than to start with the general 
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formulas. 

3. Problem of the submerged ring. Consider an infinitesimally thin 
plate of width 21 which is moving with velocity vm beneath a free fluid 
surface (Fig. 1). The fluid is considered to be ideal, incompressible, 
and gravity effects are absent. We take the origin of Cartesian coordi- 
nates ry at the center of the plate with the x-axis parallel to the 
direction of motion of the plate. The angle of inclination of the plate 
to the x-axis is equal to a. We reverse the motion and take the plate 
to be stationary and the flow approaching it with velocity v~. We adopt 
the Joukowski-Chaplygin type of flow with finite velocity at&he trail- 
ing edge of the plate (Fig. 1). The problem of the submerged wing with 
gravity taken into account was solved for the linearized case by 
Lavrent’ev and Keldysh [IO]. Fedorov [31 solved the problem of the sub- 
merged wing with gravity effects not taken into account, using the con- 
dition of Chaplygin and A.L. Lavrent’ev. 

We map the flow region conformally in the z-plane onto the exterior 
of two cuts in the real axis of the c-plane (Fig. 2). For these, the 
cuts (0, 1) and te2, co) may be chosen. so that the point at infinity of 
the c-plane will correspond to the point at infinity of the z-plane tlO1. 
The points with abscissae a and b on the upper edge of the cut (0, 1) 
correspond to the points A and B (Fig. 1). 

We write the boundary value problem (2.2) for determining the func- 
tion Y(3) in the form 

dY 
Imz = 0 (0, 1) (a,, W, Y (b) = 0 (5”) for 6 -+ 00 

Fig. 2. 

the cut (0. 1). 

The boundary value problem 

The solution of the Dirichlet 
(3.1) has the form [2,6,71 

(3.1) 

problem 

(3.2) 

Here, co is a real constant: the root 
has its real value on the upper edge of 

(.2.3) for determining the function (b(3) 
in the case under consideration will, obviously, take the form 

Re Q, (6) = 0 (a,, 4 (3.3) 

Im @(3> = - R + a on the upper edge of the cut (0, 1) between the 
points a and b 

XIII @(3) = a on the remaining portion of the cut (0, 1) 

lo(g) = o(1) for 3 - m 
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The canonical solution of the 

from equation (1.10) of II81 

Cherepanov 

corresponding Riemann problem is found 

x1 (5) = x3 (6) = v-c-m 
We take the root to be positive on the upper edge of the cut (~2, m). 

For the case under consideration. the canonical solution is not diffi- 

cult to guess. We note that here the system of equations (1.8) of [81 

are sat.isf ied, since a/p = 1 (see also [93 ). 

The solution of the boundary value problem (3.3) will be found from 

formula (1.11) of IId, where the remark at the end of the last paragr8Pl 

should be taken into account. Omitting fairly tedious steps connected 

with the calculation of the integrals, we finally obtain 

x 24CK-1) I/a@-1) ( 
~ - 

) 
--‘I. 

a-6 
_ $_ 2uLy +25---1 (3.5) 

Here, the function ‘4 [<(< - I)] behaves like O(c) for 5 - aa; the argu- 

ment of the root changes by vi in going around the points a and b on 

the upper edge of the cut (and it is equal to - vi on the upper edge of 

the cut (0, 1) between the points a and b). 

The mapping function z = ~(5) is determined from equation 

do dY dw -_-.- 
dc - dt; . dz (3.6) 

The right-hand side of equation (3.6) is determined by equations 

(3.5) and (3.2). and is a known function of 5. 

To detqmine the unknown parameters cc, a2, a and b, we have the 

following conditions: 

for j+ 00 

(Cl is the cut (0, 1)) (3.7) 

‘d’4 
3) Im d5 s -ddr, = Q + V,(Q is the parameter which deter- 

1 mines the depth of submergence) 

4) $3 d< = 0 (condition of single-valuedness) 

C 1 
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The solution of the final system of equations (3.7) for determining 

the parameters c,,, ag, a and b poses a problem in itself, due to the 

difficult (not tabulated) integrals which appear. 
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